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1. General framework

& .7: m-D manifold with coordinates (!,--- , ™)
& (V,g): d-D(curved) Lorentz manifold with
(wO’ wl, v ’md—l)

& The action for .#Z moving in _/":
Sa) = [ VGdgldg' - dg™,
where G and the induced world-volume metric G 3:
G = |det(Gap)l,
Gopl= &0

& Einstein summation convention

¢ a,By---=0,1,--- y,m; p,v,---=0,1,--- ,d—1

&zt denotes 9z /O
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* Time-like assumption: det(Go3) < 0

- Time-like in mathematics < Causality in
physics

% The resulting field equations

% (VGGrar,)

s G’ @l T, (x) = 0
where
(G*P): the inverse matrix of (G,z)

'y : the Christoffel symbols of the metric g

(which vanish if .1 is the flat Minkowski space).
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& Rich geometric properties: e.g., they are invariant
under both arbitrary reparametrizations R x .#Z — R X
A of the world-volume and isometries ./ — _/".

& Classical string theory, the theory of membranes
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2. The equations for relativistic strings

Let (t,z1, - ,z,) be points in R1T":
ds® =) da? — dt’.
=1
A surface .7 takes the form
mizmi(t,ﬂ) (?:21,"- ,n).
The Lorentz metric

ds® = (dt,d0)M (dt,do)T,

M — ( |@e|* — 1 (@¢, o) ) ,

(xi, o)  |Tol?

where

in which x = (¢4,:-- ,xz,) and

n
(T, o) = > Tigwio, |T® = (we,2e), |zol®
=1

= (xg,xq).

Home Page

=
T

Title Page

44 44

L
EE

Page 7 of 61
Go Back
Full Screen

Close

i

Quit


http://www.scut.edu.cn

Assumption

The surface .7 is time-like:
det M < 0,

namely,
(e, 20)” — (|2e|* — 1)|wo|* > 0

& Time-like in mathematics «—- Causality in physics
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Time-like, Space-like, Light-like

(1) Vector V ¢ R+
e Vanishing vector

e Non-vanishing vector V
Time-like: o € [0,7/4)
Space-like: o € (7w /4,7 /2]
Light-like: o = /4

a=/L(V,1)
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X1

Figure 1: Time-like, Space-like, Light-like vectors
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(2) .7:asurfaceinR'*"; P € .#; normal vector 7,

e .7 is time-like (resp. space-like, light-like) at P:
if 71, is space-like (resp. time-like, light-like).

o .7 is time-like (resp. space-like, light-like):
if it is time-like (resp. space-like, light-like) at every
point P € .~7.

e P c .7isasingular point: 7, = 0
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ta np

X1

Figure 2: Time-like, Space-like, Light-like surfaces
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The area element of .7 is

det = \/(@r, ©0)2 — (|| — 1)|wo|2dtdO

— Nambu-Goto Action in classical string theory.

Definition Surface .7 is called to be extremal, if
x = x(t, 0)

is a critical point of the area functional

o = [[ Viwi o0 = (@il = DlzoPdas
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The Euler-Lagrange equation

( |$0|233t — (x¢, To) To ) B
Ve, o)? — (|2e]? — 1)|z6|? /],

2 (1)
(@t To)xt — (|T8]|* — 1) g 5
Vi zo)? — (|lz4* — 1)|zel? / ,
Proposition The equation (1) is equivalent to
|o|*Tie — 2(xt, To)Tto + (|T6|* — 1)T99 = O (2)

for smooth solutions.

& In particular, taking 6 = x; and n = 2, (2) is nothing
but the classical Born-Infeld equation.
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& (2) contains n nonlinear PDEs of second order. These
equations show that the surface is extremal if and only if
its mean curvature vector vanishes.

& Although in the process of deriving (2) we assume
that the surface is time-like, these equations themselves
do not need this assumption.

& The metric is Lorentzian (resp. Riemannian), if the
surface is time-like (resp. space-like). The correspond-
ing equations are hyperbolic (resp. elliptic) if the surface
is time-like (resp. space-like). A connected surface is
of mixed type if it contains both a time-like part and a
space-like part simultaneously. In this case, the equa-
tions (2) are also of mixed type.
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& Known results

- Calabi (1970); Cheng and Yau (1976): Space-like

- Barbashov, Nesterenko and Chervyakov (CMP, 1982);
- Milnor (1990, Michigan Math. J.);
- Kong (2004, Europhys Lett.);
- Kong, Sun and Yi Zhou (2005, J. Math. Phys.);
- Liu and Yi Zhou (2006):
Time-like surfaces

- Kong, Zhang and Zhou (2006, Comm. Math. Phys.):
Time-like surfaces with singular points

- Gu (1985, 1990, 1994): Extremal surfaces of mixed type
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& Motivation

Green, Schwarz, Witten (Superstring theory): There is a
conformal mapping such that the equations become lin-
ear wave equations

Conformal mapping? _ Homerag |
Title Page
44 | 144 |
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. - . . . . Page 17 of 61
A complete analysis on nonlinear dynamics of relativistic —
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3. Time-like extremal surface with singular points

Let
U =T, V= Tg.
Then
2(u, v) |lu|2 — 1 3
Up — — Vg =
t |’U|2 2] |’U|2 v 9
vy — ug = 0.
Setting
U = (uav)Ta
we have
U: + A(U)Ug = 0, (3)
where
2(u,v) lu|?2 — 1
- D) nXxXn —2In><n
A(U) = |v| |v|

_Ian 0
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Property 1 Under the time-like assumption, (3) is a non-
strictly hyperbolic system with two n-constant multiple
eigenvalues:

A= =Ay=A_, App1 =+ = Aop, = A4,
where
1
A= (— (w0} & Vw,0)7 = (JuZ = Do) .

Property 2 )\ are linearly degenerate.

Property 3 System (3) is rich in the sense of Serre.
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& Riemann invariants

Ri:ui—l—)\_vi, Ri+n:ui—|—)\+vi (’I:Zl,-'- ,n).
They satisfy
OR; | ORi _ . ORiun | ORin _
ot  “tToex 7 ot -8

& Riemann invariants \:

A AA_ A A
A =0, —F AT =

D R _ 0.
ot T M oa ot TN om

- Good gauge: linearizes the equations (1) or (2)
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Consider the Cauchy problem for (1) with
t=0: x==p0) €C? =z =q(0) cC"

Introduce the initial characteristic propagation speeds:

—(a(0),p'(0)) + v/(a(0),p'(9))* — (14(0)* — V)|’ (9)1*
1P’ (6)|?

A+ (0) =
Theorem (Global existence) Suppose that there exist constants
A, and A* such that

A, <AL(0) A" and A4 (0) >A_(0), VOER. (4a)

Then the Cauchy problem admits a unique global C? solution
x = z(t,0) on RT x R, if and only if, for every fixed 0, € R

A_(Hl) < A_|_(92), A" 01 - (—OO, 92) (4b)
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Moreover, under the assumptions (4)-(5), the global C?
solution * = =x(t,0) satisfies that, for arbitrary fixed
(t,0) € Rt x R, either (¢, 0) is a singular point, i.e.,

xg(t,0) =0
or, the surface is time-like at (¢, 0), i.e.,

Z(t,0) > 0, (5)
where

L(t,0) = (x4(t,0),z6(t,0))* — (|z:(t, 0)1* — 1)|zo(t, 0)|*.

& See Kong, Zhang and Zhou (CMP, 2006)
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& Remarks:

- (4a):: Limited initial characteristic propagation speeds
- (4a)2: Time-like initial velocity

- (4b): Causality law holds in the motion process

- (5): Time-like surfaces with singular points

- If (4b) is not satisfied, then the surface is no longer time-
like and changes its type, for example, from the time-like
type to the space-like type.

- Similar results for the mixed initial-boundary value
problems with Dirichlet boundary conditions or Neu-
mann boundary conditions
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4. Solution formula of the motion

Step 1 Cauchy problem

O A OXy Oy
ot 86 ot 06 (6)

t=0: Ay =AL(0).

- Define

0 2
GRS worrwon

o+t o—t
ooy =5 [ Are@)de—5 [ A-(e@)de.

Let &6 = o(o) be the inverse function of o0 = p(0) and o0 =
®(t, 0) be the inverse function of 0 = O(t, o).

- The solution of (6)

As(t,0) = As(o(B(t,6) £ ).
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Step 2 Consider the Cauchy problem

OR; OR; _
ot (t=1,---,n)
ORin | 5. (t, 0) 0

ot 9 N

with the initial data

. { R; = q:(6) + A—(0)p}(6) = R)(6),
Riin = i(0) + A4 (0)p}(6) = RY,,(6).

The solution of the Cauchy problem

Rz’(t7 0) = R'?(Q((I)(tv 9) - t))v
Riin(t,0) = R,?+n(g(q)(t, ) +1))
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Step 3 The solution of (3)

(A (% 0)Ri(8,0) — A_(8,0) Ry n(t, 0)
i = A (t,6) — A_(£,6) |

o _ Ritn(t,0) — Rit,0)
L AL (t,0) — A_(t,0)

Step 4 The solution of (2)

x(t,0) = p(0) +/0 u(s, 0)ds.
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Step 5 Introduce characteristic coordinates 0. (¢, 0)

0, 1
=, mo-x (c)dc’

_ [ A+(C) o (C)
9‘/0 A Q) — A% / A Q) — A_(Q)

d¢.

(t,9)

0 0_ 0, 0

Figure 3: Geometric meaning of (6_, 6 )
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By means of 6 (¢, ), we have

(0 i (0_ ke
p(+)42rp( )_|_% 2,(0)de

XL, (t, 9) =

where

2:(¢) = Ip"(6)1%q:(¢) — (a(¢), P’ (€))Pi(C)

V{a(€),p'(€))? — (la(Q) 1> — DIp’'(O)I?
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Remarks

- Solution formula of d’Alembert’s type

- Advantages:
(a) The trajectory of a point 0 in the string: 0 = 6(¢)
(b) Numerical analysis

(c) Time periodicity of the motion of closed strings
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Summary

Original equations

4
Quasilinear hyperbolic system for (u, v) = (z¢, zg)

U

Properties

D

Gauge A\ and Riemann invariants R; (i = 1,---2n)
Y
Solving the gauge X,
()
A linear systemfor R; (¢ =1,--- ,2n)
4
(u,v) = (x4, xo) and then x(t, 0)
()

Introduce characteristic coordinates 6, (t, 0)

U

Solution formula of d’Alembert’s type
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5. Characteristic-quadrilateral identity

Let 2 be aregionin R* xR, and z = z(t, ) be a smooth solution
of the equation (1) in this region, which corresponds to a piece
of a time-like surface. Let A, B,C and D be points in 2, and
assume that A and B (resp. D and C) are connected by a )\, -
characteristic and A and D (resp. B and C') are connected by a
A _-characteristic.

Characteristic-quadrilateral identity

z(A) +x(C) = x(B) + (D)
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Idea of proof
Let (t4,0.4) be coordinates of the point A, etc.

Special case: tp =tp = to
Since x = x(t,0) is a smooth solution of the equation (1), we
have

z(to, 0) 2 p(0), z:(t,0) = q(6), VO € [05,0p)].

Then Home Page
i) < PO £ 2iO0) 1% QPO = @O RO | o
* : 2 Jon /(a(Q),p'(0))? = (1a(OF = DIP' ()P T
a:(C) — pz(eB) +pz(0D) 1 Op |p’(C)|2Qz(C) - <q(C)9 p/(C)>p;(C) dc Page 32 of 61 |

' 2 2 Jor V{a(Q), P () — (14(Q)F — DIP' ()2
Summing up these equations gives _ Fursoeen |
z;(A) + z;(C) = p;(08) + pi(0p) = zi(B) + x;(D). o au |
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General case: tp # tp

Case 1: Finite steps
Similar to the special case
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Case 2: Infinite steps

Continue to divide the resulting characteristic quadrilateral, and
denote the resulting characteristic quadrilateral after n step by
A,,B,,C,,D (in which A,, is the highest point, and C,, is the low-
est one). Noting the boundedness of the characteristics A\,

An,én,é’n — D as n — oo.

Thus,

(2(A) + z(B>) z(B) + x(B1),
x(By) +z(C) = =(B2) + =(Bs),

2(An) +2(Cn) = @(Bn) +2(D)+
[(An) + 2(Cp) — 2(Bn) — x(D)].

\

Summing up them leads to

2(A) +z(C) = =z(B)+ =(D) + [z(An) + 2(Cy) — 2(B,) — 2(D)]
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6. Numerical analysis and topological singularity

Figures 4-6 show the motion of a unit circle with

Figure 4: The extremal surface in the Minkowski space R 12
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05+

Figure 5: The projection of extremal surface in (x, y)-plane
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Figure 6: The dynamics of the closed string moving in R1*2
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Figures 7-9 show the motion of a unit circle with

xt = (0, —0.99 sin(80)).

Figure 7: The extremal surface in the Minkowski space R*2
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05

Figure 8: The projection of extremal surface in (&, y)-plane
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Figure 9: The dynamics of the closed string moving in R*2
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See movies

From Figures and movies:

& In phase space, there are some topological singu-
larities, even if the solution is still smooth. For exam-
ple, there are some cross points in the string. In fact, for
some cases, we can compute the number of these cross
points, and their appearing time.

& Time periodicity!
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7. Time periodicity of the motion of closed strings

Consider a vector-valued function f(t, ) defined on the domain
Rt x R.

Definition 1  The function f(¢,0) is called to be generalized
time-periodic, if there exists a positive constant 7', a constant
»(T) and a constant vector D(T") such that

f(t+T,0) = D(T) + f(t,0 + o(T)), V (t,0) € R* xR,
where ¢(T') and D(T') depend only on T..
T': generalized period

»(T): generalized phase angle
D(T): translation displacement
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Let C; be the plane curve induced by the function f (¢, 9).

Definition 2 The motion of the plane curve C, is said to pos-
sesses the generalized time-periodicity, if there exist a positive
constant 7" and a translation mapping .7, depending on T but
independent of ¢, such that

Ciyr = TCy,

namely,
T ft,) — fE+T,-)
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Figure 11: Generalized time-periodic function with D(T") # 0
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Definition 3 The function f(t, 0) is called to be essen-
tially time-periodic, if there exists a positive constant T,
a constant vector D(T') and an unit orthogonal matrix
M(T) such that, for every t ¢ Rt

.f(t + T, ) — D(T) + M(T).f(ta ')7 (D)
where D(T') and M(T') depend only on T
T': essential period

D(T): translation displacement
M(T): rotational factor
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Figure 12: Essentially time-periodic function with rotation but
without translation

Figure 13: Essentially time-periodic function with rotation and
translation
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Example Consider

Ut — Ugpy = 0 in (0, o0) X R,
u=g, uy=h on {t=0} xR,

where g, h are periodic functions with period, say, 7.

_ @+t +gl@—t) 1 o
u(t z) = . LGS

It holds that

w(t + T, x) = u(t, z) +/0 h(¢)d.

u(t, x) is a generalized time-periodic function
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Assumption
p(0), q(0) : periodic functions with period

Theorem 1 (Global existence) Suppose that
Z(0) >0, VOe]lo,2].

Then the Cauchy problem admits a unique global C? so-
lution z = z(¢,0) on R™ x R, if and only if,

A_ in A :
oelon =) < ool 1)

Moreover, the solution = = x(t, 0) satisfies that, for arbi-
trary fixed (¢,0) € Rt x R, either x4(t,6) = 0 or

(@4(t,8), za(t, 0))? — (Jas(t, 0)[> — 1)|wo(t, 6)]* > 0.
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Theorem 2 (Time-periodicity) Under the assumptions of
Theorem 1, the solution x = =x(¢,0) has a formula of
d’Alembert’s type, and possesses the generalized time-
periodicity:

7 1
T~ ), mE-AE®

Y A+(C)
== 50 -A 0%

P
Dy(T) = / 2,(¢)d¢.

& The motion of closed strings possesses time
periodicity

& The space periodicity implies the time periodicity

Home Page

=
T

Title Page

44 44

L
EE

Page 52 of 61
Go Back
Full Screen
Close

Quit

L


http://www.scut.edu.cn

The generalized phase angles are not unique:

G Pl cocccoocconst ’ ’

Figure 14: Translation of 0 after _ or 6 moving one period
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Any fixed point 6¢ in the string has two different moving
ways. However, the resulting positions 0" stand for the

same point in the string at the time ¢t + T':

o1(T) — ¢ (T) = =2,

then,
ol — 0t = 2.

o+(T)
et

Figure 15: 6! has two different moving ways, but the resulting
positions stand for the same point
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8. Initial-boundary value problem for finite strings
& Some existence results
& Solution formula

& Several numerical examples
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Numerical examples

Consider the motion of an open string with the initial
shape

x(0,0) = (sin(270),sin(47w0)), 6 € [0,1],
the initial velocity
x¢(0,60) = (0, 0.5sin(270)), 6 € [0,1]

and homogenous Dirichlet boundary conditions at their
end points
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Extremal surface formed by the motion of open string

Figure 16
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0.5r-

Figure 17: The projection of the above extremal surface

- See the movies for dynamics of motion of finite strings
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Open problems
¢ Extremal surfaces of mixed type?
Singularity?

4 The motion in a curved space-time?
Schwarzschild or Kerr Space-time?

¢ Multi-dimensional version?
The motion of a torus in R13?

- Eigenvalues with constant multiplicity
- Linear degeneracy ¢ Symmetry
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Conjecture

The motion of any closed sub-manifold in the Minkowski
space-time possesses the time periodicity
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Thank you
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